Sand 3D Printer Shopping The most complete on the net - SANDY TECHNOLOGY CO. //srqwj.com/en/tag/sha-xing-3d-da-yin-ji-xuan-gou/ Fri, 25 Oct 2024 07:34:40 +0000 en-US hourly 1 //wordpress.org/?v=6.7.1 //srqwj.com/wp-content/uploads/2024/04/cropped-logo-32x32.png Sand 3D Printer Shopping The most complete on the net - SANDY TECHNOLOGY CO. //srqwj.com/en/tag/sha-xing-3d-da-yin-ji-xuan-gou/ 32 32 Sand 3D Printer Shopping The most complete on the net - SANDY TECHNOLOGY CO. //srqwj.com/en/blogs/why-buy-a-sand-mold-3d-printer/ Fri, 25 Oct 2024 07:34:37 +0000 //srqwj.com/?p=1729 An article that allows you to figure out once and for all why you need to buy a sand mold 3D printer and what unique value and advantages it can actually bring to the table. Follow 3DPTEK and take your casting business to the next level.

为什么要购买砂模3D打印?/a>最先出现在三帝科技股份有限公司?/p> ]]> In today's fast-moving manufacturing sector, sand mold 3D printers are emerging as the center of attention for many businesses. So why buy a sand mold 3D printer? What unique value and advantages does it bring to the table?

sand mold 3d printers
3DPTEK Sand Mold 3D Printer

II. Shortening the production cycle

The traditional sand mold production process is usually more cumbersome, need to go through the mold design, production, assembly and other aspects, consuming a lot of time. Sand mold 3D printer greatly simplifies this process, it can be directly based on the digital model of the sand mold layer by layer printing, without the need to make molds and complex assembly operations. This shortens the production cycle significantly, enabling companies to bring products to market faster and seize the first opportunity. Taking automobile manufacturing as an example, the development cycle of new models is often very tight, sand mold 3D printer can make sand molds for automobile engines and other parts in a short period of time, accelerating the trial production process, helping enterprises to verify and optimize their products faster, and improving the overall research and development and production efficiency.

III. Cost reduction

The purchase of a sand mold 3D printer requires a certain initial investment, but in the long run, it can bring significant cost reductions for enterprises. On the one hand, as mentioned earlier, it reduces the mold making and assembly in the traditional sand mold making process, reducing labor costs and mold costs. On the other hand, as 3D printing can realize high-precision manufacturing, it reduces the scrap rate and subsequent processing costs. In addition, 3D printing technology can also optimize the design of the sand mold, so that it meets the requirements of the premise of more lightweight, thus reducing the use of casting materials, further reducing costs. For some small batch but a variety of products for the enterprise, sand mold 3D printer cost advantage is more obvious, because it does not need to make a special mold for each product, greatly reducing the production cost and inventory pressure.

IV. High degree of design freedom

Sand mold 3D printers offer designers a high degree of design freedom. Traditional manufacturing processes are often limited by the structure of the mold and the manufacturing method, and designers need to consider many process factors when designing a product, thus compromising the design. 3D printing technology, on the other hand, breaks down these limitations and allows designers to give full play to their imagination and design more innovative and unique product structures. For example, they can design castings with complex internal runners to optimize product performance, such as improving heat dissipation efficiency or fluid flow performance. This increased design freedom not only helps companies develop more competitive products, but also promotes innovation in the industry as a whole.

V. Personalization

With the diversification of market demand and the trend of individualization becoming more and more obvious, personalized customization has become an important development direction of the manufacturing industry. Sand mold 3D printer can precisely meet this demand, it can according to the customer's specific requirements, quickly create a unique sand mold, to achieve personalized custom production. Whether it is a single piece of customization or small batch customization, sand mold 3D printer can easily deal with. This is important for some high-end equipment manufacturing, medical equipment and other fields.

VI. Environmental protection and sustainable development

In today's era of environmental protection and sustainable development, sand mold 3D printers also have certain advantages. The traditional sand mold production process will produce a large number of waste and pollutants, such as waste mold materials, chemical reagents, etc., causing greater pressure on the environment. The sand mold 3D printer in the manufacturing process is relatively more environmentally friendly, it is mainly used in sand and other environmentally friendly materials, and can be optimized through the design and printing parameters to reduce the waste of materials. In addition, because 3D printing technology can achieve precision manufacturing, reducing the production of scrap, further reducing the impact on the environment. Therefore, the purchase of sand mold 3D printers is in line with the company's environmental philosophy and social responsibility, and helps the company achieve sustainable development.

To sum up, purchasing sand mold 3D printer has many advantages, including high precision and complex structure manufacturing ability, shorten the production cycle, reduce costs, high design freedom, personalized customization and environmental sustainability. For modern manufacturing enterprises, sand mold 3D printer is not only a kind of advanced production equipment, but also an important tool to enhance the competitiveness of enterprises and realize innovative development and sustainable development. With the continuous progress of technology and the continuous expansion of the application, I believe that the sand mold 3D printer will play an important role in more areas, for the development of the manufacturing industry to bring new opportunities and changes. Therefore, when considering the production upgrade and development strategy of enterprises, the purchase of sand mold 3D printer is a choice worth serious consideration.

为什么要购买砂模3D打印?/a>最先出现在三帝科技股份有限公司?/p> ]]> Sand 3D Printer Shopping The most complete on the net - SANDY TECHNOLOGY CO. //srqwj.com/en/blogs/the-business-value-of-sand-casting-3d-printers/ Wed, 23 Oct 2024 07:10:51 +0000 //srqwj.com/?p=1711 An article that provides a comprehensive understanding of the business value of sand 3D printers in the foundry line. A must-read article for foundries who have plans to purchase sand 3D printers.

砂型铸?D打印机在铸造业中的商业价?/a>最先出现在三帝科技股份有限公司?/p> ]]> From a foundry's perspective, industrial sand 3D printers can deliver significant business value. Here are some of the key points that foundries are most concerned about:

Improve foundry efficiency

  • Reduced mold costs: With industrial sand 3D printing there is no need to make expensive molds, reducing overall production costs.
  • Increasing productivity: Additive manufacturing enables rapid production of sand molds and cores, shortening lead times and increasing productivity.
  • Reduced labor costs: Automated 3D printing of sand molds minimizes the labor costs associated with traditional manual molding and core making processes.

  • Improved accuracy and consistency: Industrial sand 3D printing ensures accuracy and consistency in the production of sand molds and cores, resulting in higher quality castings.
  • Reduced defect rate: Additive manufacturing minimizes the risk of human error, reducing defect rates and the need for rework or scrap.
  • Production of structurally complex parts: Sand 3D printing is capable of producing complex geometries and detailed designs that are difficult or impossible to achieve with traditional methods. Think back, don't you often come across pieces with very complex structures that are so costly or even impossible to produce using traditional casting methods that you end up having to give up on the order. With sand mold 3D printers, these are no longer problems.
  • Cost savings and competitiveness

    • Reduction of material waste: Industrial sand 3D printing minimizes material waste, reduces costs and lowers environmental impact.
    • Reduced production costs: Additive manufacturing can reduce production costs by as much as 50% compared to traditional methods.
    • Improving competitiveness: Foundries using industrial sand 3D printing can gain a competitive advantage in terms of cost, quality and delivery time.

  • Design for Additive Manufacturing: Industrial sand 3D printing enables foundries to produce complex designs that were previously impossible or impractical.
  • Rapid Prototyping and Production: Additive manufacturing enables rapid prototyping and production, allowing foundries to respond quickly to changing customer needs.
  • Production Flexibility: Sand 3D printing enables foundries to produce small batches or one-off castings, ideal for small production runs or prototyping.
  • Other key advantages

    • Improved security: Industrial sand 3D printing reduces the risk of accidents and injuries associated with traditional molding and coremaking processes.
    • environmental benefit: Additive manufacturing minimizes material waste, reduces energy consumption and enables the use of recycled materials.
    • Data-driven production: Industrial sand 3D printing enables data-driven production, enabling foundries to monitor and optimize their production processes in real time.

    By adopting industrial sand 3D printers, foundries are able to increase efficiency, improve casting quality, reduce costs and increase competitiveness, ultimately realizing increased profitability and business success.

    Sand casting 3D printer
    Sand casting 3D printer

    Traditional foundries face a number of challenges and difficulties, including:

    • Tooling costs and lead times: Making molds and models is a time-consuming and expensive process that can take weeks or even months to complete.
    • Labor costs and shortages: Foundry work requires skilled labor, which may be difficult to find and retain in areas with labor shortages.
    • Material waste and energy consumption: Conventional casting processes lead to significant material waste and energy consumption, which can increase costs and have an environmental impact.
    • Quality control and defect rates: Achieving consistent quality and minimizing defect rates can be challenging, especially for complex geometries and high volume production.
    • Complexity and design constraints: Conventional casting methods make it difficult to produce complex geometries, fine designs and thin-walled castings.
    • Increased global competition: Foundries face increasing competition from low-cost producers in other regions, making it difficult to maintain profit margins.
    • Environmental and safety regulations: Foundries must comply with increasingly stringent environmental and safety regulations, which can be both time-consuming and expensive.
    • Customer demand for faster delivery: Customers are demanding shorter lead times and faster delivery, which can be difficult for traditional foundries to meet.
    • Fluctuations in production volume: Foundries are often faced with fluctuating production volumes, which can make it difficult to maintain efficiency and optimize resources.
    • technological obsolescence: Traditional foundries may struggle to keep up with technological advances, such as additive manufacturing, which may render their processes obsolete.

    To overcome these challenges, many foundries are adopting new technologies, such as industrial 3D printing, to improve efficiency, reduce costs and increase competitiveness. SANDY Technology has introduced a number of specialized foundry-readySand 3D PrinterThe process covers SLS (selective laser sintering), binder jetting, and foundry partners can focus on it.

    砂型铸?D打印机在铸造业中的商业价?/a>最先出现在三帝科技股份有限公司?/p> ]]> Sand 3D Printer Shopping The most complete on the net - SANDY TECHNOLOGY CO. //srqwj.com/en/blogs/sand-3d-printer-buying-guide/ //srqwj.com/en/blogs/sand-3d-printer-buying-guide/#respond Wed, 04 Sep 2024 02:07:04 +0000 //srqwj.com/?p=1619 A single article gives you an in-depth look at how to buy the right sand 3D printer for your business use. From current status to cost analysis to technical guidance for your pre-purchase reference, an indispensable article.

    砂型3D打印机购买指?/a>最先出现在三帝科技股份有限公司?/p> ]]> In today's era of rapid development of manufacturing industry, traditional foundries are facing increasingly fierce market competition and constantly improving product quality requirements. As an innovative technology, sand 3D printers are becoming the key to improving competitiveness and upgrading foundries. This buyer's guide is designed to provide comprehensive, in-depth guidance to managers of traditional foundries to help them make informed purchasing decisions.

    I. Understanding your own needs

    Analyzing the current situation of factory production

    • Evaluation of traditional process: Carefully review the traditional casting process currently used in the factory, including the way the molds are made (e.g., wood molds, metal molds, etc.), the molding process (hand molding or machine molding), and the process of melting and pouring. Evaluate the time, labor, and material costs as well as the problems associated with each process. For example, traditional wooden mold making can take weeks and is prone to dimensional deviations and damage; hand molding is labor-intensive, inefficient and inconsistent in quality.
      • Product Characterization: Define the type of castings that the plant will mainly produce, whether they are castings with simple structures or castings with complex internal cavities, thin-walled structures or finely curved surfaces. Determine the size range of the castings, from small castings of a few centimeters to large castings of several meters. At the same time, analyze the requirements for casting accuracy, for example, certain aerospace castings may need to be millimetre accurate or even higher. In addition, the material of the casting should be considered, which may vary from material to material in terms of casting process and equipment requirements.
      • Production scale considerations: Evaluate the daily production scale of the plant, including monthly or annual casting production. Understand the characteristics of the production orders, whether it is a large number of single product production or small quantities of multi-species production. For the peak and trough production capacity changes also need to have a clear understanding, which will affect the selection of equipment and production arrangements.
    3DPTEK-J1600Pro Sand 3D Printing Printer New Brand
    3DPTEK-J1600Pro Sand Mold 3D Printer

    Defining goals and desired improvements

    • Cost control objective: If cost reduction is the main objective, the cost composition of each link needs to be analyzed. Mold production costs account for a large proportion of the traditional process, and sand 3D printers can eliminate the mold production process, significantly reducing this part of the cost. At the same time, considering labor costs, 3D printers have a high degree of automation, which can reduce the reliance on labor. In terms of material costs, although 3D printing requires specific sand and binder, material utilization can be improved by precisely controlling the amount of material used, and waste can also be reduced through the re-cycling of sand. In addition, the 3D printing process can optimize the structure of sand molds and reduce the amount of sand used through lightweight design. For example, for a medium-sized foundry, by introducing sand 3D printers, the cost of molds may be reduced by 40%, the labor cost by 30%, and the material cost savings by about 20%.
      • Efficiency Improvement Requirement: For foundries pursuing productivity improvement, focus on the molding speed of the equipment. Sand 3D printers can print a complex sand pattern in a few hours, compared with the traditional mold making and molding weeks, a significant increase in efficiency. In addition, 3D printers can print multiple sand molds at the same time, or zone printing on a large sand mold, greatly reducing the overall production cycle. For example, after the introduction of 3D printers in an automotive parts foundry, the product development cycle has been shortened from several months to a few weeks, and production efficiency has been increased by more than 50%.
      • Quality Improvement Expectations: The ability of sand 3D printers to print with high precision is critical when higher quality products are required. It can precisely control the size and shape of the sand mold, reducing dimensional deviations and surface defects in the castings. At the same time, due to the stability and consistency of the printing process, it can improve the internal quality of castings and reduce defects such as porosity and slag entrapment. For example, in some high-end equipment manufacturing fields, the scrap rate of 3D printed sand castings has been reduced from 10% in the traditional process to less than 2%, and the product quality has been greatly improved.
      • Flexibility enhancement direction: for foundries that need to respond to small batch, multi-variety production needs or personalized custom orders, the advantages of sand 3D printer is particularly obvious. It does not need to make physical molds, can be quickly switched to produce different products according to the digital model, greatly improving the flexibility of production. For example, some art foundries or customized parts production enterprises, through the 3D printing technology can meet the diverse needs of customers, broadening the market space.

    Evaluation of key features of sand 3D printers

    Printing Accuracy

    • Impact of precision on casting quality: Printing precision directly determines the dimensional accuracy and surface quality of castings. High-precision printing can ensure that the dimensional deviation of the castings is within a very small range and meet the strict assembly requirements. In terms of surface quality, high-precision printing can reduce the roughness and defects on the surface of the casting and improve the appearance quality of the casting. For example, in the production of key components such as engine blocks, high-precision sand molding can ensure the precision of the fit between the piston and the cylinder block and improve the performance and reliability of the engine.
      • Choosing the right precision equipment: First, the required precision level is determined according to the design requirements and usage scenarios of the product. For some common mechanical parts, millimeter-level accuracy may be sufficient; while for high-precision castings in aerospace, medical devices and other fields, sub-millimeter or even higher accuracy may be required. Secondly, understand the precision parameters of different devices, including layer thickness and dimensional error range. You can refer to the technical information and actual test data provided by the manufacturer, while exchanging experiences with other users. For example, 3DPTEK sand 3D printers are capable of achieving a dimensional accuracy of ±0.3mm, which is suitable for the production of castings with high accuracy requirements.
      • Comparison of different precision level equipment and applicable scenarios: low-precision equipment is usually relatively low-priced, applicable to some production scenarios that do not require high precision and focus on cost control, such as ordinary construction machinery castings. Medium-precision equipment balances price and performance, and is suitable for the production of most industrial parts. High-precision equipment, on the other hand, is suitable for high-end manufacturing areas, such as aerospace, precision instruments, etc., but the price is relatively high. For example, in the production of automobile engine cylinder head, medium-precision equipment can meet the basic production requirements; for aero-engine blades and other high-precision castings, you need to choose high-precision equipment.

    Print Size

    • Print size in relation to production scale and casting size: For large foundries, equipment capable of printing large castings is often required to meet production demands. For example, in the production of large ship engine block, may require several meters or even larger size printing equipment. For small foundries or production of small castings of enterprises, the smaller size of the equipment may be more economical and practical. At the same time, the print size also affects the footprint and space requirements of the equipment, which need to be taken into account in factory planning.
      • Selection strategy: according to the factory's production planning and market positioning to determine the required print size. If the main production of large castings, you need to choose a larger print size of the equipment; if the main small castings, you can choose small or medium-sized equipment. Also consider the future development needs, set aside a certain amount of capacity expansion space. In addition, pay attention to whether the equipment print size can be flexibly adjusted, for example, some equipment can be replaced by the printing platform, or even no sand box printing to adapt to the production of castings of different sizes. For example, a medium-sized foundry plans to expand into the field of large-scale casting production in the future, then in the selection of equipment, you can give priority to those with upgradable print size or modular design of the equipment in order to expand in the future according to demand.

  • The importance of stable operation of equipment: in casting production, the stability of equipment is crucial. Once the equipment failure, it may lead to production interruption, affecting the delivery date, and bring great economic losses to the enterprise. Especially for the continuous production of foundry, equipment for a long time stable operation is to ensure production efficiency and product quality basis. For example, in the automotive parts casting production line, if the 3D printer frequently fails, it will lead to production line stagnation, affecting the whole car production schedule.
    • Examine methods of stability and reliability:
      • Check the manufacturer's quality control system: understand the manufacturer's production quality management process, including raw material procurement, parts processing, assembly and commissioning and other aspects of quality control measures. A manufacturer with a perfect quality control system is usually able to produce more stable and reliable quality equipment. For example, some well-known manufacturers of each component are strictly quality testing to ensure that it meets the high standards of quality requirements.
      • User Word of Mouth: Communicate with users who have already used the device to understand their evaluation of the stability and reliability of the device. The actual use experience of users is the most direct and real feedback. You can participate in industry exhibitions, join professional communities and other ways to establish contact with other users to get their opinions and suggestions. For example, some foundries will prioritize those brands with good reputation in the same industry when choosing equipment.
  • Software Support

    • Excellent software features and functions:
      • Model Processing: Powerful 3D printing software can efficiently process complex casting models, including model repair, optimization, slicing and other functions. For example, for some models imported from CAD software that may be defective or unsuitable for printing, the software can automatically detect and repair these defects to ensure that the model can be printed smoothly.
      • Printing parameter setting: The software should provide a wealth of printing parameter setting options, such as printing speed, layer thickness, nozzle temperature, binder dosage and so on. Users can according to different casting requirements and material properties, precise adjustment of these parameters to obtain the best printing results. For example, for thin-walled castings, it may be necessary to adjust the layer thickness and printing speed to ensure the strength and precision of the sand mold.
      • Production process management: the software should also have production process management functions, including order management, task scheduling, equipment monitoring. This can help foundries realize efficient production management and improve production efficiency. For example, through the software can real-time monitoring of the operating status of the equipment and printing progress, rationalize the arrangement of production tasks to avoid production congestion.
      • Evaluate software for ease of use, functional integrity, and compatibility with devices:
        • Ease of use: the operating interface of the software should be simple and clear, easy to get started. With an intuitive graphical interface and clear operating procedures, even non-professional technicians can quickly master. Ease of use can be assessed by trying out the software or viewing a demo video of the software in action. For example, some software adopts a wizard-type operation process, users only need to follow the prompts step-by-step operation to complete the entire printing process.
        • Functional completeness: Check whether the software has the basic functions mentioned above such as model processing, printing parameter setting, production process management, and whether there are some special features such as automatic optimization algorithms, remote control and so on. The more complete the function, the higher the applicability and flexibility of the equipment. For example, some software has intelligent optimization algorithms, which can automatically adjust the printing parameters according to the shape and structure of the casting to improve printing efficiency and quality.
        • Compatibility: Ensure that the software has good compatibility with the device and can drive the device stably for printing. Also consider the compatibility of the software with other design software, such as CAD software, for smooth model import and processing. You can check the software's technical documentation or consult with the manufacturer to find out what file formats and software interfaces it supports. For example, some software supports common file formats such as STL, OBJ, etc., and can work seamlessly with most CAD software.

    III. Cost and return on investment analysis

    Equipment purchase costs

    • Price range for different brands and configurations: The price of sand 3D printers varies depending on the brand, technology level, print size, accuracy and other factors. Generally speaking, the price of equipment from European and American brands is relatively high, and may be in the millions or even tens of millions of dollars; the price of equipment from Chinese brands is relatively low, and may range from hundreds of thousands of dollars to millions of dollars depending on different configurations. For example, some high-end European and American equipment with advanced technology and excellent performance, but the price is very expensive; and some of China's emerging brands of equipment in the price-performance ratio is more advantageous, such as 3DPTEK, this brand is more famous in China, the equipment is very cost-effective, while 3DPTEK operates its own almost 10 foundries, but also dozens of foundry enterprises in China to provide Equipment, it can be said that the market has been strictly verified, is a very good choice.
      • Analysis of the reasons for price differences:
        • Technology level: Advanced printing technology, high-precision control system, stable mechanical structure, etc. will increase the cost of the equipment. For example, equipment using laser sintering technology is usually more expensive than equipment using ordinary binder jetting technology, because laser sintering technology offers higher precision and better sand strength.
        • Brand influence: well-known brands usually invest more in research and development, production, after-sales service, etc., and their brand value will also be reflected in the price of equipment. Some brands with many years of industry experience and good reputation, often able to provide more reliable equipment and better service, but the price is also relatively high.
        • After-sales service: perfect after-sales service system, including equipment installation and commissioning, training, maintenance, technical support, etc., will increase the manufacturer's operating costs, which is reflected in the price of equipment. Some manufacturers provide 24-hour online technical support, rapid response maintenance services, etc., which will have an impact on the price.

    operating cost

    • Cost of supplies:
      • Sand: Sand used in sand 3D printers typically needs to meet certain grain size, shape, and strength requirements. Prices for different qualities of sand vary and fluctuate with market supply and demand. For example, some high-strength, low-dust specialty sands may be relatively expensive, but can improve the quality of the sand pattern and printing results.
      • Binder: Binder is the key material to bond the sand together to form the sand mold, and its price will also affect the operating cost. Different types of binder differ in performance and price, and need to be selected according to actual needs. At the same time, the amount of binder will also affect the cost, some advanced printing technology can reduce the amount of binder used to reduce costs.
      • Energy consumption cost: the equipment will consume electricity during operation, and its energy consumption cost is related to the power of the equipment, running time, electricity price and other factors. When choosing equipment, you can focus on the energy efficiency ratio of the equipment and choose energy-saving equipment. For example, some devices use advanced energy-saving technologies that can reduce energy consumption under the premise of ensuring print quality. High-power devices usually consume more energy per unit of time, and if the device runs continuously for a long time, the cost of energy consumption will increase significantly. And the difference in electricity prices in different regions will also have an impact on the cost, such as industrial power consumption in concentrated areas may have certain preferential policies on electricity prices, need to take these factors into account to accurately assess the cost of energy.
      • Equipment Maintenance Costs: Regular maintenance and upkeep of equipment is necessary to ensure its normal operation and incurs certain costs. Including the replacement of wearing parts, equipment cleaning, calibration and other aspects of the cost. Some manufacturers will provide equipment maintenance service packages, foundries can choose according to their own situation. At the same time, the reliability and stability of the equipment will also affect the maintenance costs, low failure rate of the equipment maintenance costs are relatively low. For example, some equipment using high-quality components and advanced design, reducing the frequency of replacement of wear parts, reducing maintenance costs.

    Return on investment assessment

    • Cost savings analysis:
      • Mold Cost Savings: As mentioned earlier, the cost of making molds in a traditional casting process is high, whereas sand 3D printers eliminate the need to make physical molds, which can significantly reduce this cost. Mold cost savings can be assessed by calculating the difference between the cost of making a traditional mold and the cost of 3D printing a sand mold. For example, a complex casting can cost tens of thousands of dollars to make the mold, whereas with a 3D printed sand pattern, this cost can be reduced by more than 80%.
      • Labor Cost Savings: Due to the high degree of automation in 3D printers, the reliance on labor is reduced. Labor cost savings can be calculated by comparing the amount and cost of labor in a traditional process to the labor requirements with the adoption of 3D printing. For example, a traditional casting line may require dozens of workers for mold making, molding, etc., whereas with the adoption of 3D printers, only a few operators may be needed for equipment monitoring and maintenance, and labor costs can be reduced by about 50%.
      • Material Cost Savings: Material costs can be reduced by accurately controlling the amount of material used and improving material utilization. For example, while traditional molding processes may produce large amounts of waste sand and scrap, 3D printing can reduce waste by accurately controlling material usage based on the model. At the same time, some 3D printed materials can be recycled, further reducing costs.
      • Increased revenue from efficiency gains:
        • Reduced cycle time: Sand 3D printers can significantly reduce product development and production cycles. For some products that need to be on the market urgently, early delivery can result in a higher market price and competitive advantage. The value of the efficiency gains can be assessed by calculating the additional benefits of delivering products earlier. For example, by adopting 3D printing technology, an automotive parts foundry shortened the development cycle of new products from 6 months to 2 months, and entered the market ahead of schedule, gaining a higher market share and sales revenue.
        • Increased capacity: Efficient operation of the equipment and rapid prototyping capabilities can increase the capacity of the plant, thereby increasing sales revenues. The increased capacity and corresponding sales revenue can be projected based on the plant's production schedule and market demand. For example, if a foundry was producing 1,000 castings per month and the introduction of 3D printers increased capacity to 1,500 castings, and assuming a profit of $100 per casting, the increase in profit would be $50,000 per month.
      • Calculation of the payback cycle: The feasibility of the investment is assessed by calculating the payback cycle, taking into account factors such as equipment purchase costs, operating costs, cost savings and increased revenue. The payback cycle refers to the time it takes from the time the equipment is put into use to the time it takes to recover the full investment. For example, assuming that the purchase cost of a sand 3D printer is $2 million, and that cost savings and increased revenue total $800,000 per year, the payback cycle will be about 2.5 years. The potential impact of market changes, technology updates, and other factors on the payback cycle also needs to be considered in order to make a more accurate assessment.

    IV. Market research and brand selection

    Collecting market information

    • Industry exhibitions: Attending foundry industry exhibitions at home and abroad is an important way to get information about the sand 3D printer market. The exhibition can directly contact with many equipment manufacturers to understand their latest products and technologies. At the exhibition, you can have in-depth communication with the technical personnel and sales staff of the manufacturers to obtain detailed product information and quotations. At the same time, you can also observe the live demonstration of the equipment, visualize the performance of the equipment and the operation process. For example, in some large international foundry exhibitions, there will be well-known manufacturers from all over the world to display their latest equipment and technology, providing foundries with a wealth of choices.
      • Professional websites: there are many professional casting equipment websites and industry forums, which gather a large amount of equipment information, user reviews and technical articles. By browsing these sites, you can understand the characteristics of different brands of equipment, user feedback and market trends. Some sites also provide equipment comparison and selection tools to help users better choose the right equipment for themselves. For example, on some professional websites, you can find detailed parameter comparisons of different brands of sand 3D printers and real user reviews, which provide reference for purchasing decisions.
      • User forums: Join user forums or communities in the foundry industry to exchange experiences with other foundry users. These users usually share their actual experience of using different equipment, the problems they encountered and the solutions. Their experiences and suggestions are very valuable for new users and can help avoid some common mistakes and pitfalls. For example, in some forums, users will share information about the actual use of the equipment, the quality of after-sales service, etc., which can provide reference for other users when choosing equipment.

    Assessing brand reputation

    • Manufacturer qualifications: Check the qualification certificates and honorary awards of the equipment manufacturers to understand their status and influence in the industry. For example, some national specialties and new "small giants" enterprises, high-tech enterprises, with ISO quality management system certification, etc., these qualifications prove that the manufacturer's strength in technology research and development, production management and other aspects. Honors and awards, such as the industry's scientific and technological innovation awards, excellent product awards, etc., also reflects the manufacturer's products in the technology and quality has been recognized.
      • Production experience: Manufacturers with rich production experience are usually more secure in product quality and after-sales service. You can find out how long the manufacturer has been engaged in the production of sand 3D printers, the scale of production and past project experience. A manufacturer that has been in the industry for many years and has provided equipment and solutions to many foundries is often more trustworthy. For example, certain manufacturers have been in the 3D printing and casting field for decades and have accumulated a wealth of experience, enabling them to provide personalized solutions based on the needs of different foundries.
      • Technology R&D strength: focus on the manufacturer's technology R&D investment and innovation ability. Advanced technology is a guarantee of equipment performance and quality, whether the manufacturer has its own R & D team, patented technology and cooperation with scientific research institutions can be used as a basis for assessment. For example, some manufacturers continue to invest in R & D funds, the introduction of new printing technology and features to meet the changing needs of the market, such manufacturers are more forward-looking in technology.
      • Market share and user evaluation: Knowing the market share of the brand's equipment can reflect its popularity and competitiveness in the industry. At the same time, by checking the evaluation of other users, you can get the real feedback about the quality, performance and after-sales service of the equipment. You can search online for user reviews, consult industry experts or directly contact other foundries to learn how they feel about the use of the brand's equipment. For example, if a brand of equipment in the market has a high share and the user evaluation is generally good, then it means that the brand is excellent in all aspects.

  • Field inspection: If the conditions allow, it is recommended to go to the equipment manufacturer for field inspection. You can visit the manufacturer's production workshop to understand its production process, quality control process and the advanced degree of production equipment. Observe whether the manufacturer's production management is standardized, and how the technical level and work attitude of the staff. At the same time, you can also have an in-depth communication with the technicians and managers of the manufacturers to understand their technical strength and service concept. For example, in the production workshop, you can check the assembly process of the equipment, the quality of the parts and the quality inspection link in the production process.
    • Prototype testing: Seeking to conduct prototype testing is a very important step. Prototype testing at the manufacturer or your own factory, inputting the actual casting model into the equipment, observing the printing process of the equipment, the quality of the sand mold, and the stability and reliability of the equipment. Through the prototype test, you can visualize whether the equipment meets your production needs and quality requirements. In the testing process, pay attention to record the printing time, sand accuracy, surface quality and other key data, and compare them with the technical parameters provided by the manufacturer. For example, you can prepare some representative models of complex castings for testing and observe the performance of the equipment in handling complex structures. Remember, this is very important, if you temporarily can not visit the site, even if you have to pay the cost (pieces are not big, generally manufacturers will be free to play, or at cost to help you play) but also to strive to let the manufacturer to print samples, which is the most intuitive understanding of the equipment.
  • V. After-sales service and technical support

    After-sales service content

    • Equipment installation and commissioning: the installation and commissioning of the equipment is the basis for ensuring the normal operation of the equipment. Excellent after-sales service should include a professional installation team to ensure that the equipment can be properly installed and initial commissioning and calibration. During the installation process, the basic structure and operation methods of the equipment should be explained to the user so that the user can initially understand the equipment. For example, the installers will reasonably arrange the installation position of the equipment according to the actual layout of the factory and the production demand, and carry out the connection and debugging of electrical and mechanical aspects.
      • Training: Comprehensive training services are crucial for users. The training content should include the operating skills of the equipment, the use of software, routine maintenance knowledge and common troubleshooting methods. Training can be divided into on-site training and online training in two forms to meet the needs of different users. For example, on-site training can be carried out after the completion of equipment installation, face-to-face guidance by professional trainers; online training can be through video tutorials, online classrooms and other ways to allow users to learn anytime, anywhere.
      • Maintenance: Timely and efficient maintenance service is the guarantee of long-term stable operation of the equipment. After-sales service should include regular equipment maintenance, such as cleaning, lubrication, inspection, etc., as well as in the event of equipment failure can quickly respond and repair. Manufacturers should provide sufficient spare parts inventory to ensure that damaged parts can be replaced in a timely manner during the maintenance process. For example, when equipment malfunctions, the after-sales service team should arrive at the site within a specified period of time to diagnose and repair the problem and minimize the impact of equipment downtime on production.
      • Software upgrade: With the continuous development of technology, the software of the equipment also needs to be upgraded and optimized. After-sales service should include regular software upgrade services to improve the performance and functionality of the equipment. Software upgrades can be carried out remotely through the network or by technicians at home to ensure a smooth and safe upgrade process. For example, the new software version may add some new functions, such as optimizing printing algorithms, improving printing speed and precision, etc., to bring users a better experience.

  • Solving technical problems: In the process of using the equipment, you may encounter various technical problems, such as the optimization of printing parameters, the improvement of the quality of the sand pattern, and the compatibility problems with other equipment. Professional technical support team can provide timely solutions to help users solve these problems and ensure smooth production. For example, when encountering the problem of substandard printing accuracy, the technical support staff can analyze the printing parameters, equipment status and other factors to give the corresponding adjustment recommendations to improve printing accuracy.
    • Optimized printing parameters: Different castings and production environments may require different printing parameter settings. Technical support personnel can provide optimized printing parameters according to the specific needs of the user and the actual situation, in order to achieve the best printing effect and production efficiency. For example, for some complex structure castings, technical support personnel can adjust the layer thickness, nozzle moving speed, binder dosage and other parameters according to its characteristics to improve the quality and strength of the sand mold.
    • Provide process improvement suggestions: With the accumulation of production experience and technological progress, process improvement is an important way to improve production efficiency and product quality. The technical support team can provide suggestions and solutions for process improvement according to the latest development of the industry and the actual situation of users. For example, by optimizing the production process and improving the molding method, etc., the overall production level of the foundry can be improved.
  • VI. Summary and recommendations

  • Clear demand: Before purchasing, you must have a clear understanding of the current production status of their own factories, product characteristics, development planning, etc., clear their needs and expectations of the direction of improvement, so that you can choose the most suitable for their own equipment.
    • Comprehensive assessment of equipment characteristics: from the printing accuracy, print size, device stability, software support and other aspects of the equipment to carry out a comprehensive assessment to ensure that the performance of the equipment can meet the production requirements.
    • Consideration of cost and return on investment: not only should we focus on the purchase cost of the equipment, but we should also give full consideration to factors such as operating costs, cost savings and increased revenues, and calculate the return on investment cycle to ensure the feasibility of the investment.
    • Emphasis on brand reputation and after-sales service: choose manufacturers with good brand reputation, rich production experience and strong technical research and development strength, and at the same time to ensure that manufacturers can provide perfect after-sales service and technical support.
  • Encourage informed decision-making

    • Traditional foundry in the face of equipment renewal and technological upgrading, to be brave enough to try new technologies, new equipment. Sand 3D printer as an innovative technology, can bring great changes and enhancement for the foundry. However, when making a purchase decision, we should consider all aspects of the factors, conduct sufficient market research and analysis, and manufacturers to carry out in-depth communication and exchange.

    It is hoped that managers of traditional foundries can make wise purchasing decisions based on this buying guide, taking into account the actual situation of their own factories, introducing sand 3D printers suitable for them, enhancing the competitiveness of their factories, realizing sustainable development, winning the first opportunity in the wave of digital transformation, and injecting new vitality into the development of the foundry industry.

    Leave a message online to get a quote for sand 3D printer

    砂型3D打印机购买指?/a>最先出现在三帝科技股份有限公司?/p> ]]> //srqwj.com/en/blogs/sand-3d-printer-buying-guide/feed/ 0